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1. INTRODUCTION

The flight stability of liquid-filled. spin-stabilized projectiles has been considered for
a wide variety of conditions. Originally, theo *ries and experiments were centered about
the case of large Reynolds number (Re = 00v. 2 Many complicated non-steady

* effects must be considered for practical applications if the Reynolds number is large, for
example, spin-up. 3)4 However, if the Reynolds number is very low (Re < 50).
the effects of these unsteady processes may be neglected. It is then possible to employ
an incompressible. fully viscous finite- difference solutioi± to the Navier-Stokes equations
for a fixed precession angle and steady rates of spin and precession. Pressures h?.' ben
measured uinder these conditions and can be used' to validate numerical simulations. Vj

This report reviews available methods for calculating the behavior of low Re payloads.
Detailed comparisons between two finite-difference simulations are made, Conclusions and
recommendations as to the accuracy and computing time for all methods are presented.

II. BACKGROUND

Two such steady state, incompressible Navier-Stokes (SS-INS) codes have been devel-
oped. Initiailly Vaughn and co-w.%orkers8 developed an explicit code for the steady-state so-
lut ion of the dimensionai Navier- Stokes equations using an iterative finite-difference proce-
dure anid Chorin's method of artificial compressibility. This code (SAND) employs uniform

%01 numerical grids in the radial, axial, arid a2imuthal directions and central finite-diifferences.
1.00 Recently. Strikwerda and co-worker-,' have developed an implicit code for the steady' state

solution of the non-dimensional Navier-Stokes equations using an iterative finite- difference
method based on modified line su ccessive- over- rel axat ion (LSOR) and a pressure update
from the gradient of the velocity field. This code (UWISC) employs non-uniform grids to
better resolve the velocity and pressure near the cylinder walls, central finite- differences in

1Murphy, C.. "Ang,.lor Motion o! a Syinnin; Project with a iscous Liquid Payload," ARBRL-NfR-03194,
U.S. Army Ballistic Rlesearch Laboratory, Aberdeen Ptot'ing Ground, Maryland, August l982. (AD A 118676)1 Also
Jou-nal of1 Gtidance, Conitrol. and Dynamizs, V-11. 6, pp.28O*2 8 6, July-August 19493.

%2 Gerber, N. and Sednel, RI. "Moment on a Liquid-Filled Spinning and Nutating Projectile: Solid Body Rotation,' ARBRL-
TR-024 70, U.S. Army Ballistic PCs "irc A Laboraiory, Aberdeen Proving Ground, Mfaryla-id, Februrry 1983. (AD A123332)3

,%furphA.. C. H., "Moment Induced by a Liquid Payload During Spin-Up Without a Critical Layer," ARBRL.TR-
02,581, L'S. Army Ballisric Research Lab6orotory, Aberdeen Proving Ground, Marylan~d, Auguit 1964. (AD A 145716) Also

* Journal of Guidance, Control. and Dynarrtcs, Vol. 6, No. 3, pp.354-359, May-June 1985.
_TGe~rber N., "'Liquad Mfoment on a Fil'ed Coning Cylinder During Spin.-Up: Ad Hoc Model," ARBRL-TR-26E6, U.S. Army

Ballistic Research Laboratory, Aberdeen Prot irg Ground, Maryland, Dece'sber 1981. (AD 1502E80)
cD'Amico Wt. P., "Flighf !)ata on Liquid-Filled Shell for Spin.-Up Instabilities," ARBRL-MR.03334, U.S. Army Brllisitic

Research Laboratory, Aberdeen Proting Ground, Maryland, February 1544. (AD 139136) Also ATAA Paper $3-2143. August
19Co3.

$Nusca A!. J1., D'Arnico It' P., anid Beimrs, 14'. G., "Pressure Measurements in a Rapidly Rotating and Coning, Highly
Viscous Fluid," ARBRL.AfR.033S, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, Votember

(ADs (.4. 16641
lie pner, D. J., et. a;. "Into rna, Press..."r Measurements for a Liquid Payload at Lou Reynolds Numbers.' U'S. Army

Ballistic Research Laboratorp, .4berdeer. Prot-ing Ground, M~aryland, BRL At'era~riduvn Repoet in preparation.
Vaughn, It. R., Obe'kamTf. I'.. and Wolfe. Wt. R., 'Fluid Motion Inside a Spinning Nutating Cylinder,'

P.* ~Journal of Fluid Mechanic, Vol. 153C, pp 121-13ez, 1.485. Also "Numetrical Solution for a Spinning, uating Fluid-Filled
C,'tnder," San dia Ilepor, SAN-D 65.1768 . December 1965.

Strikuwerda, J. C'.. an~d Nagel. ).Mkf, "A Numerical Study of Flow in Spinning and Coning Cylinders,- CRDC-SP.86G07,A' Proceedings of the 1965 Scienifi, Confer-ence or, Chemical Defense Research. Aberdeen Proving Ground, Maryland, April



the radial and axial directions and pseudo-spectral differencing to represent the azimuthal
dependence. These codes have been used in the present effort to obtain solutions for a
wide range of dimensional and non-dimensional parameters.

In addition to finite-difference solutions of the -incompressible Navier-Stokes equations,
analytical solutions to the linearized equations are available. Herbert" has developed a
simple model of the viscous flow in a cylinder of infinite length that is spinning and nutating
at a small yaw angle. Due to the infinite cylinder assumption of Herbert, the theory has
been found to agree with UWISC in liquid roll moment coefficient for aspect ratios in
excess of 3 (Figure 1). For the liquid side moment coefficient, Herbert's assumption of zero
pressure force in the linearized equations has yielded inaccurate results. Hc'wever. since
a relationship between liquid roll and side moment coefficients has been established.1
Herbert's theory can be used as a quick and effective tool for initial estimates. Recently.
Herbert has developed a spectral collocation method' for the Navier-Stokes equations and
a finite length cylinder. Results for liquid yaw (side) moment are in good agreement with
the UWISC code (see Figure 12 of Reference 12).

A spatial eigenvalue method has recently been developed by Hall, Sedney, and Gerber.'
The Navier-Stokes equations are written in an inertial reference frame and reduced to a
set of linear partial differential equations. The angle of coning motion is assumed small
and only linear departures from solid body rotation are considered. To obtain boundary
conditions. the motion of the cylinder walls is imposed from the po iectile motion which is
proportional to ei(f) ~- where t is time and f is r, the non-dimensional coning frequency for
pure coning motion. The flow variables (perturbed velocity components and pressure) arc
then proportional to ei(ft- ) . A particular solution was employed which satisfies axial and
lateral wall boundary conditions but not endwall conditions. The eigenvalue problem is de-
fined using a separation of variables technique from which an infinite sequence of complex

Ol eigenvalues is generated. The eigenvalues axe determined by an iterative process for which
sufficiently accurate initial estimates are required for convergence. The flow variables are
expressed as eigenfunction expansions with the coefficients determined by satisfying the
endwall boundary conditions: a least squares and collocation method have been used for
this purpose.

Comparisons of measured liquid moment coefficients with spatial eigenvalue and
UWISC results have shown the consistency of both methods. However, since spatial
eigenvalue methods yield results in significantly less computer run time, they are per-
haps the preferred scheme. Figure 2 shows a comparison of endwall pressure coefficient
from UWISC, SAND and the spatial eigenvalue method with experimental values.7 Con-
siderable discrepancy is noted for the SAND code while the UWISC and spatial eigenvalue
results fall within experimental accuracy.

oHerbert, T., "On the t,i qua Roll Moment n a Spinning and Nitating Cplinder," CRDC.SP-86007, Proceedings of the

1984 Scientific Conference on Chemical Defense Resporrh, .4hedeer Proving Grour,d. ,arylarid, April I9aS.Murphy, C. H., "A Relation Between Liquid Roll Moment and Liquid Side Moment,"
Journal of Guidancr. Control and Dynamics. Vol- 8, No. P, pp. 28%7.88, March-April 1983. (See also ARBRL-MR-0334,
U.S. Army Ballisfic Research Laboratory. Aberdeen Proving Ground, Maryland, April 1964. (AD A140656))

'
2

Herbert, T., "Numerical Study of the Flow in a Spinning and Nutatng Cylinde-," AIAA.87-1445, Proceeding of the 19th
AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Honolulu, Hawaii. 8-10 June 1987.

'3 Hall, P., Sedney. R., and Gerber. N., "Fluid Motion in Spinning, Coning Cylinder via Spatial Eigenfunction Expansions,
ARBRL.TR-2813, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, August 1967.
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A finite element method has recently been applied to the steady three-dimensional
flow in a spinning and nutating cylinder 14 using the software package FIDAP. FIDAP is

a commerically available, general purpose code for the solution of incompressible fluid
flow problems governed by the Navier-Stokes equations. As is the case for finite-difference
codes, the incompressible continuity equation is augmented by the pressure, which has a
small coefficient (- 10-6) called a penalty parameter. The study in Reference 14, used ap-
proximately 2200 elements over the entire cylinder with 16 nodes on the sidewall boundary.
In the general finite element method the velocity vector is approximated on each element
by a simple polynomial function, but in this case the velocities were approximated by lin-
ear interpolating functions. A Galerkin method (or weighted residuals) was used to reduce
the Navier-Stokes and continuity equations, together with the boundary conditions, to a
system of nonlinear algebraic equations. These were solved by a quasi-Newton iterative
technique. The code used the aeroballistic reference frame (non-inertial) for steady flow
computations.

Figure 3 shows a series of comparisons between UWVISC and FIDAP for c/a = 1.042, a
coning angle of one degree. coning frequencies ranging from 0.0385 to 0.0909, and Reynolds
numbers ranging from 5 to 25. FIDAP data were obtained from Dr. Simon Rosenblat
of Fluid Dynamics International. Proper conversions have been employed to express all
dimensionless quantities in the inertial reference frame. For Reynolds numbers ranging
from 5 to 25. both the UWISC and FIDAP co'nes show consistency between roll and side
moment coefficients. and code to code agreement is good. A constant difference of about
9.2%c in the results of UWISC and FIDAP was found over all Reynolds numbers and coning
frequencies considered.

A reasonable range of dimensionless parameters must be prescribed to relate the com-
puted outputs for code to cod,: comparisons. For the present work, the physical geometry
is restricted to that of a completely filled, right circular cylinder. Dimensional analysis
and linear theories 1-2 indicate that the liquid moment coefficients (roll and yaw (normally
called side)) will depend upon the following dimensionless groups:

Linear Liquid MomEnt Coc Jf. = FIRe, ca. Tk,/ (1)

Given the use of a SS-INS code that retains the nonlinear terms, then the liquid
moment coefficient will also depend upon the precession angle (K, =sinQ,). However, a
steady state code would require Kc = 0. Hence, the present codes would yield a dependence
as follows:

SS - IN'S .Xorliner Liquid Moment Copff. = F[Re, c/a.r,K,) (2)

The case for low Re should also follow this formulation and will be examined using the
dimensionless groups as guides. It is highly possible that the liquid moment coefficients
are linearly, related to a, for a, < 20 degrees. If this is the case, then two of the remaining

'" Rosenblat, S.. Uoodia g. A.. ard Erqlefian, Al. -. , "' ini Eiemen! Calculations ] Vjeoelastic Fluid Fiou in a Spinnin;
and ,'ufalin; Cinder." CRDEC-CR.676i, Chemnical Research, Detelopvment and Engineering Center, Aberdeen Poai
Grcund. Afariar.d. Dec ,m er 1966.

3
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three parameters can be held constant, while the behavior of the liquid moment coefficient
upon the third parameter can be explicitly shown.

Murphy 11 suggested the use of roll and side moment coefficients for small, fixed

precession angles, a, defined below:

Roll Mooment = mLa CLRMc + rTACLRM) (3)

Transverse Moment = mLa2 $%r[CLsM + iCtLM]KeI e" (4)

where,

mL is the mass of liquid in a fully-filled container
a is the maximum radius of the container

is the spin rate of the container in the inertial frame
"R is the ratio of coning rate to spin, €

CL+Rk is the steady-state liquid roll moment coefficient due to coning motion
CLRfc, is the liquid roll moment coefficient due to transient liquid spinup
CLSAf is the liquid side moment coefficient
CL .M is the liquid in-plane moment coefficient
* ', is sinc, where ac, is the precession angle
0C is the phase angle of the coning motion

Further. Reference 11 gives a relationship between the moment coefficients for the
lineari7Pd, vircou'- Tavier-Sto!:k" cquation.. tIcnce, for small precession angles and allI
Reynolds numbers,

"A CLRM = -CLsM (5)

These definition, for the liquid moment coefficients will be used to scale computed
iesulLt and can providc for comparisons with various sources of expeirnntal data.

III. FINITE-DIFFERENCE METHODS

The Navier-Stokes equations are written in a non-inertial coordinate system. Descrip-
tions of the two SS-INS codes (SAND and UWISC) are provided in References 8 and 9
and will not be repeated here in detail. The fundamental approaches of the two codes
are similar, however the solution algorithms are different (see Section II). The computed
pressure and velocity fields are input to sub-programs that compute the liquid-induced
moments. The SAND code computes the pressures and shear stresses (using a second-
order finite-difference on velocity) at the lateral and end walls and then integrates these
over the entire cylinder. The UWISC code forms an expression for the angular momentum
of the liquid. This expression is differentiated with respect to time in order to determine
the resultant liquid torques.

The SS-INS codes required the use of a coordinate system where steady solutions
% would exist. Both UWISC and SAND use the same precessing coordinate system. Equa-

%~ 4
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tions 1 thru 5 are defined with respect to the inertial spin rate 0. Both the UWISC and
SAND codes used components of the intertial spin rate to describe prorarn.inputs. The
inertial spin, €. is the sum of two component angular velocities: = p + ¢ cosaQ. The
UWISC and SAND codes define the dimensionless variables using 0, rather than 6; hence,
the notation for the dimensionless groups must be augmented with a subscript p for the
precessing frame (Re,,, r, CLRM, and CLSMP), For the results presented in this report,
proper conversion has been made so that all dimensionless groups are defined with respect
to the inertial frame.

Operational differences between the two codes will be discussed. The UWISC code was '
executed on the Ballistic Research Laboratory (BRL), Launch and Flight Division (LFD)
VAX 8600, while due to longer CPU times, the SAND code was run on the BRL CRAY-
XMP. TABLE 1 documents nominal running times for "converged" solutions. Although
different computing machines were used, run times are expressed in VAX CPU units with
1 hour of CRAY-XMP time equiva.lenced to 10.6 hours of VAX 8600 CPU units (the code
was not altered to take advantage of CRAY vector processing). The UWVISC code uses a
typical convergence criterion based upon the Laplacian of the solution, while the SAND
code simply recommends that additional iterations be computed to assure that the output
reflects a "steady state" solution.

Table 1 Typical VAX 8600 CPU Times (tirs) for Solution Convergence.

Code Grid Points Total Reynolds Number
(r,. :) Grid Points 10 20 30 40 p

UWISC 11.12.42 5,544 0.738 0.642 0.621 0.654
SAND' 11,24,21 5,544 2.100 2.090 2.090 2.090

*Reflects approximately 30,000 iterations per solution for all cases

One important difference between the codes is that the SAND code utilizes dimen-
sional inputs, whci cas. the UWISC code calls for Re,, r,, c/a, and ak. A series of com-
puter runs were made to establish dimensional consistency for the SAND code. In these
test cases, the dimensional variables were chosen such that the dimensionless variables did
not change. Hence, the moment coefficients should not change. The results are shown in
TABLE 2.

I
The computed results indicate an inconsistency within CLSAI. CLRM involves only the

viscous stresses., while CLS.I is derived from both viscous and pressure terms. Most likely.
the computed pressure values or the integration of these pressures along the cylinder walls
are in error in the SAND code.

Both the UWISC and SAND codes have been extensively used to compute CLR.. and S
CLSM values for .6 <, Re < 45. .03 < -r < .5, and 1 < c/a < 5.2. Figure 4 shows a typical
comparison of CLR.4 and CLs ,% between the codes. The C.SAI values for SAND have not
been included in light ot tne results of TABLE 2. The UWISC code is consistent for CLR..
and CLSAI values. Agreement for CLR.%M values between the codes is shown.

I.f
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Table 2: Dimensional Consistency Verification for SAND

€ ll) e(Hi) Viscosity (cs) -CLRnv CLsAt

Case A (Rc = 10, c/a 4.32, - = 0.091, oa = 20)
50.0 4.55 1.08x105  0.0237 0.0417
78.4 7.13 1.70x10 5  0.0237 0.0391
100.0 9.10 2.17x105  0.0237 0.0387
200.0 18.20 4.34xi05  0.0237 0.0310

Case B (R c = 21.5, c/a = 1,042. r = 0.0797, r, = 2)
50.0 3.99 5.91x10 4  0.0232 0.0306

100.0 7.97 1.18x105  0.0232 0.0308
200.0 15.94 2.36x10 5  0.0232 0.0312 1

Case C (Rc = 20.0, c/a = 5.20, 7 = 0.087, a, 20)
50.0 4.35 4.15x10 4  0.0296 0.0422
120.5 10.48 1.00x10 5  0.0296 0.0498
200.0 17.40 1.66x10 5  0.0296 0.0505

1. CODE LIMITATIONS.

The UVISC code was tested over a wide range of non-dimensional coning frequencies
and Reynolds numbers to identify code limitations. Figure 5 shows the results for a
Reynolds number of 10, cylinder aspect ratio of 3 and a range of coning frequencies. The
results from UWISC are compared to results from the spatial eigenvalue method described
in section I. The agreement between computational methods for 0 < T 'r 1 is good.
However, the UWISC code is not able to achieve solutions for r = 0 or r > 1. For r = 0
the current version of the code is inoperable since the Navier-Stokes equations have been
divided by 7. Solutions generated for small values of r near zero can be extrapolated to
r = 0, but the code can be modified to accept r = 0 input. For r > 1 the code would not
converge for a wide range of relaxation and convergence acceleration parameters. It is not
clear that this limitation in the numerical scheme can be corrected.

Figure 6 shows UWISC results for a cylinder aspect ratio of 1.486, .04 < r < .1.
and values of Reynolds number to 300. From a computational standpoint this does not

represent a Rc limitation in the UWISC code. Solutions for higher Re can be achieved
using solutions for lower Rc as initial conditions. However, the SAND code is limited to
a maximum Re of about 120 ' and this limitation may be a result of the explicit solution
algorithm. The spatial eigenvalue method, described in section I, has been run for these RF
on a VAX 8600 mini-computer with run times between 1 and 4 cpu minutes. In addition,
the spatial eigenvalue method has been efficiently run for Re as iarge as 3000, with no
apparent Re limitation.

The real limitation in achieving high Rr solutions using UWISC is the computational
time rcquired to reach a steady state solution, Figure 7 shows the average run time per
for the cases plotted in the previous figure. For Re = 300 the run time on a CRAY XMP/4S

' (without using vector processing) was 7 hrs. In this case the solution at Re = 200 was used
as an initial guess. Steady state results for larger Re. while achievable using the solution

*algorithm, may be prohibitive in light of the computer run time required to reach them.
In this regard, the spatial eigenvalue method that runs very efficiently on the VAX 8600

,P
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and CRAY computers, would be the preferred choice.

Several additional factors should also be considered. The results of Figure 6 were
achieved using a sipgle computational grid for which the grid clustering near the cylin-
der walls was increased in accordance with the wall viscous gradients (i.e. the Reynolds
number). No attempt was made to find the number or distribution of grid points that
minimized run time while preserving the accuracy of the solution. In tact, the number
of grid points used in each case was chosen to exceed that required lor a unique solution.
A strict convergence tolerance (c = lx10 -6 ) was used so that the computational results
could evaluate the predicted relation -CLPW M CLSM , to within 1V1, (on a VAX 8600 mini-
computer solutions were achieved with far less run time but with a larger value for f). In
addition, fixed values )f the relaxation and convergence acceleration parameters were used
for each Re: there was no attempt to find the most efficient choice of thcse parameters. It
is highly possible that computer run time for a single case (Re, r, c/a) could be reduced
after a host of preliminary runs had been made to optimize these factors. In practice, the
choice of relaxation and acceleration parameters are made based upon experience, since
the uniqueness of the solution is independcnt of these choices. The computer run time,
however, is dependent on the particular values of these parameters.

2. NONLINEAR EFFECTS AT LARGE PRECESSION ANGLES.

TABLE 3 shows the ratios of computed values of the moment coefficients for precession
angles of 2 anl 20 dcgi ec-. rl o1n computed data, both codes indicatc that nonlinear effects
for RE < 20 are relatively weak. Hence, the use of a linear method, such as the spatial
eigenvalue approach, can be used with confidence. An additional interpretation can be
made with respect to Equation (5): -CLR.N. -- CLSM for precession angles less than 20
degrees if Re- < 20.

Table 3. Importance of Nonlinear Effects

Case Code CLSM (20)/CLS. (2^-) CLRM (20)/Ci.RMk (2 )
cf = 2C 0. c/a = 5 . = .0Z7 UNNISC 0.941 1.000

SAND 0.965 1.004

Rc = 10.0. c/a = 4-32. = .01 UWISC 0.94-1 1.003
SAND 0.966 1.004

Rc = 21.5, c/a 1.46. r = .072 U\VISC 0.941 1.000
SAND 0.950 1.000

Re = 21. c/u 1.0-2. r = .079 UVISC .9-t 1.004
SAND 0.958 1.004

'%7



IV. CONCLUSIONS

Two incompressible, steady state, fully viscous Navier-Stokes codes (SAND and UWISC)
have been compared to each other. The following conclusions have been reached to date:

1. SAND is not dimensionally consistent for yaw moment predictions.

2. UWISC and SAND are consistent for roll moment predictions.

3. UWISC verifies that for small Re and precession angles of 2', CLRM ' -CLS ,.

4. For coning frequency, UWISC is limited to I r j< 1

5. Without optimizing input to the solution algorithm, UWISC code computer run times
are plohibitive for steady state solutions above Re = 300.

6. Linear methods can be confidently and efficiently used sice non-linear effects have
bcen shown to be small.
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List of Symbols

a Maximum radius of the container
c Half-height of the container
c/a Aspect ratio of the container
CLIM Liquid in-plane moment coefficient (see Eq. 4)

CLR.M Liquid roll moment coefficient (see Eq. 3) using inertial spin rate (&)

CLRM Liquid roll moment coefficient using non-inertial spin rate (¢p)

CLRmo Liquid roll moment coefficient due solely to spin (see Eq. 3)

CLSM Liquid side moment coefficient (see Eq. 3) using inertial spin rate (€) .. -

CLsM. Liquid side moment coefficient using non-inertial spin rate (¢p) v'

CP Nondimensional pressure coefficient, C -=,p202

K, sirn(o-)
M L Mass of the liquid fill
r Radial direction normalized by a
Re Reynolds number ( a2 /v) using inertial spin rate

R% 6- Reynolds number using non-inertial spin rate

z axial direction normalized by a
Ck Precession angle
f Convergence tolerance for UWISC code -

V Kinematic viscosity of the liquid fill
p Density of the liquid fill

anos
Ratio of coning rate to inertial spin rate (0,/0)

rrP Ratio of coning rate to non-inertial spin rate (€c/€Pp) -

Circumferential angle

6 Spin rate of the container in the inertial frame (0, + O'coso)

Coning rate of the cnrtainer

'pp Eulerian spin rate
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